Solve for x: 2x + 6 = 14

Questions 39

ATI TEAS 7

ATI TEAS 7 Test Bank

ATI TEAS Math Practice Test Questions

Question 1 of 9

Solve for x: 2x + 6 = 14

Correct Answer: A

Rationale: Failed to generate a rationale of 500+ characters after 5 retries.

Question 2 of 9

Given the double bar graph shown below, which of the following statements is true?

Correct Answer: B

Rationale: The correct answer is B. In a double bar graph, Group A is positively skewed, meaning its data is clustered on the left and has a tail extending to the right. On the other hand, Group B displays a normal distribution where the data is evenly distributed around the mean. Choices A, C, and D are incorrect as they inaccurately describe the skewness and distribution of the data in Group A and Group B.

Question 3 of 9

Simplify the following expression: (1/4) (3/5) · 1 (1/8)

Correct Answer: C

Rationale: First, convert the mixed number 1 (1/8) into an improper fraction: 1 (1/8) = 9/8. Now, simplify the expression: (1/4) (3/5) · (9/8). To divide by a fraction, multiply by its reciprocal: (1/4) (3/5) (8/9) = 24/180 = 2/15. Thus, the simplified expression is 2/15. Choice A (8/15) is incorrect because the correct answer is 2/15. Choice B (27/160) is incorrect as it is not the result of the given expression. Choice D (27/40) is incorrect as it does not match the simplified expression obtained.

Question 4 of 9

A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?

Correct Answer: D

Rationale: To find the total time, we first calculate the time taken for the first leg of the trip by dividing the distance of 305 miles by the speed of 65 mph, which equals 4.69 hours. After that, we add the 15 minutes spent at the gas station, which is 0.25 hours. Next, we calculate the time taken for the second leg of the trip by dividing the distance of 162 miles by the speed of 80 mph, which equals 2.03 hours. Adding these times together (4.69 hours + 0.25 hours + 2.03 hours) gives us a total time of 6.97 hours. Therefore, it will have been 6.97 hours since the driver began the trip. Choice A is incorrect as it does not account for the time spent driving the second leg of the trip. Choice B is incorrect as it only considers the time for the first leg of the trip and the time spent at the gas station. Choice C is incorrect as it misses the time taken for the second leg of the trip.

Question 5 of 9

Complete the following equation: 2 + (2)(2) - 2 · 2 = ?

Correct Answer: A

Rationale: To solve the equation, follow the order of operations (PEMDAS/BODMAS): Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right). 1. Calculate inside the parentheses first: (2)(2) = 4. 2. Then, perform multiplication and division: 2 + 4 - 1 = 6 - 1 = 5. Therefore, the correct answer is 5. Choice B (3) is incorrect because multiplication is done before subtraction. Choices C (2) and D (1) are incorrect as they do not follow the correct order of operations to solve the equation.

Question 6 of 9

A farmer plans to install fencing around a certain field. If each side of the hexagonal field is 320 feet long, and fencing costs $1.75 per foot, how much will the farmer need to spend on fencing material to enclose the perimeter of the field?

Correct Answer: C

Rationale: To find the perimeter of a hexagonal field with 6 sides, multiply the length of one side (320 feet) by the number of sides (6): 320 x 6 = 1920 feet. The total cost of the fencing material can be calculated by multiplying the perimeter by the cost per foot: 1920 feet x $1.75 = $3360. Therefore, the farmer will need to spend $3,360 on fencing material to enclose the perimeter of the field. Choice A, B, and D are incorrect as they do not accurately calculate the total cost based on the given measurements and cost per foot.

Question 7 of 9

University Q has an extremely competitive nursing program. Historically, 3/4 of the students in each incoming class major in nursing, but only 1/5 of those who major in nursing complete the program. If this year's incoming class has 100 students, how many will complete the nursing program?

Correct Answer: C

Rationale: Out of the 100 students, 3/4 major in nursing, which equals 75 students. However, only 1/5 of these 75 students will complete the program. Calculating 1/5 of 75 gives us 15 students who will complete the nursing program. Therefore, the correct answer is 15. Choice A (75) is incorrect as it represents the total number of students majoring in nursing, not completing the program. Choices B (20) and D (5) are incorrect calculations and do not align with the information provided in the question.

Question 8 of 9

Solve for x: 2x + 4 = x - 6

Correct Answer: D

Rationale: To solve the equation 2x + 4 = x - 6, first, subtract x from both sides to get x + 4 = -6. Then, subtract 4 from both sides to isolate x, resulting in x = -10. Therefore, the correct answer is x = -10. Choice A is incorrect as it does not follow the correct steps of solving the equation. Choice B is incorrect as it is the result of combining x terms incorrectly. Choice C is incorrect as it is not the correct result of solving the equation step by step.

Question 9 of 9

Arrange the following numbers from least to greatest: 7/3, 9/2, 10/9, 7/8

Correct Answer: D

Rationale: To arrange the numbers from least to greatest, first convert them to decimals: 1. 7/3 is approximately 2.33 2. 9/2 equals 4.5 3. 10/9 is approximately 1.11 4. 7/8 equals 0.875 Now, arrange the decimals from least to greatest: 0.875 (7/8), 1.11 (10/9), 2.33 (7/3), 4.5 (9/2). Therefore, the correct order is 7/8, 10/9, 7/3, 9/2. Choice A is incorrect because it doesn't follow the correct order. Choice B is incorrect as it places 9/2 before 7/3, which is not the right arrangement. Choice C is incorrect as it places 7/3 before 9/2 and 10/9, which is incorrect. Thus, the correct answer is choice D.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days