ATI TEAS 7
Math Practice TEAS Test Questions
Question 1 of 5
Robert plans to drive 1,800 miles. His car gets 30 miles per gallon, and his tank holds 12 gallons. How many tanks of gas will he need for the trip?
Correct Answer: B
Rationale: To calculate how many gallons of gas Robert needs for the 1,800-mile trip, divide the total distance by the car's mileage per gallon: 1,800 miles · 30 mpg = 60 gallons. Since his tank holds 12 gallons, Robert will need 60 gallons · 12 gallons per tank = 5 tanks of gas for the trip. Choice A (4 tanks), Choice C (6 tanks), and Choice D (7 tanks) are incorrect as they do not correctly calculate the number of tanks needed based on the car's mileage and tank capacity.
Question 2 of 5
Joshua needs more than 92 points to qualify for a scholarship. Each question is worth 4 points, and there are 30 questions. What inequality determines how many questions he must answer correctly?
Correct Answer: B
Rationale: To determine the number of questions Joshua must answer correctly, we divide the total points required (92) by the points per question (4) to get 23. Since he needs more than 92 points, he must answer more than 23 questions correctly, which is represented by the inequality 4x > 92. Choices A, C, and D are incorrect because they do not accurately reflect the requirement for Joshua to answer more than 92 points' worth of questions.
Question 3 of 5
Susan bought a dress for $69.99, shoes for $39.99, and accessories for $34.67. What was the total cost of her outfit?
Correct Answer: B
Rationale: To find the total cost of Susan's outfit, you need to add the prices of the dress, shoes, and accessories together. $69.99 + $39.99 + $34.67 = $144.65. Therefore, the correct total cost of her outfit is $144.65. Choice A ($139.65) is incorrect as it does not account for the full cost of all items. Choice C ($145.55) is incorrect as it includes an extra amount not part of the given prices. Choice D ($144.65) is incorrect due to a duplication of the correct answer.
Question 4 of 5
In Mrs. McConnell's classroom, there are 5 students with hazel eyes and 2 students with green eyes out of a total of 30 students. What percentage of the students have either hazel or green eyes?
Correct Answer: A
Rationale: To calculate the percentage of students with either hazel or green eyes, add the number of students with hazel and green eyes (5 + 2 = 7) and divide by the total number of students (30): 7 · 30 ≈ 0.23 or 23%. The correct answer is A, 0.23, which represents 23% of the total students. Choice B, 0.3, is incorrect as it corresponds to 30%, which is higher than the total number of students. Choice C, 0.47, is incorrect as it represents 47%, which is also higher than the total number of students. Choice D, 0.77, is incorrect as it corresponds to 77%, which is much higher than the total number of students.
Question 5 of 5
In Mrs. McConnell's classroom, there are 14 students with brown eyes and 2 students with green eyes. What is the ratio of students with brown eyes to students with green eyes?
Correct Answer: A
Rationale: The correct answer is A: 7:1. To find the ratio, divide the number of students with brown eyes (14) by the number of students with green eyes (2), which equals 7. Therefore, the ratio of students with brown eyes to students with green eyes is 7:1. Choice B (7:2) is incorrect as it does not accurately represent the ratio of students with brown eyes to green eyes. Choice C (14:2) is incorrect because the ratio should be simplified, and 14:2 simplifies to 7:1. Choice D (14:1) is incorrect as it does not consider the number of students with green eyes.