One roommate is saving to buy a house, so each month, he puts money aside in a special house savings account. The ratio of his monthly house savings to his rent is 1:3. If he pays $270 per month in rent, how much money does he put into his house savings account each month?

Questions 37

ATI TEAS 7

ATI TEAS 7 Test Bank

TEAS 7 Math Practice Test Questions

Question 1 of 5

One roommate is saving to buy a house, so each month, he puts money aside in a special house savings account. The ratio of his monthly house savings to his rent is 1:3. If he pays $270 per month in rent, how much money does he put into his house savings account each month?

Correct Answer: A

Rationale: The ratio of his savings to his rent is 1:3, which means that for every $3 he pays in rent, he saves $1 for the purchase of a house. To calculate the amount saved, divide $270 by 3: $270 · 3 = $90. Therefore, he puts $90 into his house savings account each month. Choice B, $270, is incorrect because that is the amount he pays in rent, not the amount saved. Choices C and D, $730 and $810, are incorrect as they do not align with the 1:3 ratio described in the question.

Question 2 of 5

Veronica decided to celebrate her promotion by purchasing a new car. The base price for the car was $40,210. She paid an additional $3,015 for a surround sound system and $5,218 for a maintenance package. What was the total price of Veronica's new car?

Correct Answer: B

Rationale: To find the total cost of Veronica's new car, you need to sum up all her expenses. So, $40,210 (base price) + $3,015 (surround sound system) + $5,218 (maintenance package) = $48,443. Therefore, the correct answer is $48,443. Choice A ($50,210) is incorrect as it incorrectly adds the base price to the other costs. Choice C ($43,225) is incorrect as it only includes the base price and the maintenance package, omitting the cost of the surround sound system. Choice D ($40,210) is incorrect as it only includes the base price of the car and not the additional costs for the surround sound system and maintenance package.

Question 3 of 5

Lauren must travel a distance of 1,480 miles to get to her destination. She plans to drive approximately the same number of miles per day for 5 days. Which of the following is a reasonable estimate of the number of miles she will drive per day?

Correct Answer: C

Rationale: To estimate the number of miles Lauren will drive per day, the total distance can be rounded to 1,500 miles. Divide this by the number of days she plans to drive, which is 5. 1,500 miles / 5 days = 300 miles per day. Therefore, a reasonable estimate for the number of miles she will drive per day is 300. Choice A (240 miles) is too low, Choice B (260 miles) is slightly low, and Choice D (340 miles) is too high when considering the total distance and the number of days Lauren plans to drive.

Question 4 of 5

During January, Dr. Lewis worked 20 shifts. During February, she worked three times as many shifts as she did during January. During March, she worked half the number of shifts she worked during February. Which equation below describes the number of shifts Dr. Lewis worked in March?

Correct Answer: B

Rationale: During January, Dr. Lewis worked 20 shifts. Shifts for January = 20. During February, she worked three times as many shifts as she did during January. Shifts for February = (20)(3) = 60. During March, she worked half the number of shifts she worked in February. Shifts for March = (60)(1/2) = 30. Therefore, the correct equation to describe the number of shifts Dr. Lewis worked in March is 'shifts = (20)(3)(1/2)', representing the calculation based on the given scenario. Choices A, C, and D do not accurately represent the correct mathematical relationship between the shifts worked in the different months, making them incorrect.

Question 5 of 5

Simplify the following expression: 5 x 3 · 9 x 4

Correct Answer: A

Rationale: To simplify the expression 5 x 3 · 9 x 4, first perform the multiplications and divisions from left to right: 5 x 3 = 15 and 9 x 4 = 36. So, the expression becomes 15 · 36. When dividing fractions, multiply the first fraction by the reciprocal of the second fraction. Hence, 15 · 36 = 15/36. To simplify the fraction further, find the greatest common divisor, which is 3. Divide both the numerator and denominator by 3 to get the final result: 15/36 = 5/12. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not represent the correct simplification of the given expression.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days

Similar Questions