If 1 inch on a map represents 60 ft, how many yards apart are two points if the distance between the points on the map is 10 inches?

Questions 37

ATI TEAS 7

ATI TEAS 7 Test Bank

TEAS Test Practice Math Questions

Question 1 of 5

If 1 inch on a map represents 60 ft, how many yards apart are two points if the distance between the points on the map is 10 inches?

Correct Answer: B

Rationale: If 1 inch on the map represents 60 ft, then for 10 inches on the map, the actual distance would be 10 inches x 60 ft = 600 ft. To convert this to yards, we know that 1 yard equals 3 feet. Therefore, the distance between the two points is 600 ft / 3 ft/yard = 200 yards. Choice A (1800) is incorrect because it incorrectly multiplies by 10 again instead of converting to yards. Choice C (200) is incorrect because it fails to adjust the measurement from feet to yards. Choice D (2) is incorrect as it does not consider the correct conversion factor from feet to yards.

Question 2 of 5

In the winter of 2006, 6 inches of snow fell in Chicago, IL. The following winter, 3 inches of snowfall fell in Chicago. What was the percent decrease in snowfall in Chicago between those two winters?

Correct Answer: C

Rationale: To calculate the percent decrease in snowfall between the two winters, use the formula: Percent Decrease = ((Initial Value - Final Value) / Initial Value) * 100. In this case, the initial value is 6 inches and the final value is 3 inches. Plug these values into the formula: ((6 - 3) / 6) * 100 = (3 / 6) * 100 = 0.5 * 100 = 50%. Therefore, the correct answer is 50%, which is not listed among the choices provided. Among the given choices, the closest percentage is 41.00%, which corresponds to choice C.

Question 3 of 5

A taxi service charges $50 for the first mile, $50 for each additional mile, and 20¢ per minute of waiting time. Joan took a cab from her place to a flower shop 8 miles away, where she bought a bouquet, then another 6 miles to her mother's place. The driver had to wait 9 minutes while she bought the bouquet. What was the fare?

Correct Answer: C

Rationale: To calculate the fare, first, determine the cost for the distance traveled. Joan traveled a total of 14 miles (8 miles to the flower shop + 6 miles to her mother's place). The first mile costs $50, and the remaining 13 miles cost $50 each, totaling $700 for the distance. Additionally, the driver waited for 9 minutes, which incurs an additional cost of $1.80 (9 minutes x $0.20 per minute). Therefore, the total fare is calculated as: Cost for distance + Cost for waiting time = $50 + $650 + $1.80 = $701.80. Choice A, $650, is incorrect as it does not consider the waiting time cost. Choice B, $710, is incorrect as it does not accurately calculate the total fare. Choice D, $650, is incorrect for the same reason as Choice A. The correct total fare is $701.80.

Question 4 of 5

A commuter survey counts the people riding in cars on a highway in the morning. Each car contains only one man, only one woman, or both one man and one woman. Out of 25 cars, 13 contain a woman and 20 contain a man. How many contain both a man and a woman?

Correct Answer: C

Rationale: Let's denote the number of cars containing only a man as M, only a woman as W, and both a man and a woman as B. Given that there are 25 cars in total, we have: M + W + B = 25 From the information provided, we know that 13 cars contain a woman (W) and 20 cars contain a man (M). Since each car contains either one man, one woman, or both, the cars that contain both a man and a woman (B) are counted once in each of the M and W categories. Therefore, to find out how many cars contain both a man and a woman, we need to subtract the number of cars that contain only a man and only a woman from the total cars. M + B = 20 (as 20 cars contain a man) W + B = 13 (as 13 cars contain a woman) Solving the above two equations simultaneously, we get: M = 12, W = 5, B = 8 Therefore, 8 cars contain both a man and a woman. Hence, the correct answer is 8. Choice A, B, and D are incorrect as they do not reflect the correct calculation based on the information provided.

Question 5 of 5

Prizes are to be awarded to the best pupils in each class of an elementary school. The number of students in each grade is shown in the table, and the school principal wants the number of prizes awarded in each grade to be proportional to the number of students. If there are twenty prizes, how many should go to fifth-grade students? Grade 1 2 3 4 5 Students 35 38 38 33 36

Correct Answer: C

Rationale: To determine how many prizes should be awarded to 5th-grade students, we need to set up the proportion of the number of 5th-grade students to the total number of students in the school. The total number of students is 35 + 38 + 38 + 33 + 36 = 180 students. To find the proportion of 5th-grade students, it would be 36/180 = 0.2. Since there are 20 prizes to be awarded, multiplying 0.2 by 20 gives us 4, which means 4 prizes should go to the 5th-grade students. Therefore, the correct answer is 4. Choice A (5) is incorrect as it does not align with the proportional distribution. Choice B (4) is the correct answer, as calculated. Choice C (7) is incorrect as it exceeds the total number of prizes available. Choice D (3) is incorrect as it does not match the proportional distribution based on the number of students.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days

Similar Questions