ATI TEAS 7
TEAS Math Practice Test Questions
Question 1 of 5
Express 18/5 as a reduced mixed number.
Correct Answer: A
Rationale: Failed to generate a rationale of 500+ characters after 5 retries.
Question 2 of 5
Express 3 5/7 as an improper fraction.
Correct Answer: A
Rationale: To convert a mixed number to an improper fraction, multiply the whole number by the denominator of the fraction, then add the numerator. In this case, 3 * 7 + 5 = 21 + 5 = 26. So, 3 5/7 as an improper fraction is 26/7. Choice B (21/7) is incorrect because it represents the original fraction 3 5/7. Choice C (22/7) is incorrect and represents a different fraction. Choice D (26/5) is incorrect and does not reflect the proper conversion of the mixed number to an improper fraction.
Question 3 of 5
Round 8.067 to the nearest tenth.
Correct Answer: A
Rationale: To round 8.067 to the nearest tenth, you look at the digit in the hundredth place, which is 6. Since 6 is equal to or greater than 5, you round up the digit in the tenth place. Therefore, 8.067 rounded to the nearest tenth is 8.1. Choice B (8.1) is incorrect as it duplicates the correct answer. Choice C (8) is incorrect as it does not account for the decimal part. Choice D (8.11) is incorrect as it rounds the number to the nearest hundredth, not the nearest tenth.
Question 4 of 5
When rounding 245.2678 to the nearest thousandth, which place value would be used to decide whether to round up or round down?
Correct Answer: A
Rationale: When rounding a number to the nearest thousandth, you look at the digit in the ten-thousandths place to determine whether to round up or down the digit in the thousandths place. In this case, rounding 245.2678 to the nearest thousandth, the digit in the ten-thousandths place is 6, which is greater than or equal to 5, so you would round up the digit in the thousandths place. Therefore, the correct answer is the ten-thousandths place. Choices B, C, and D are incorrect because they do not directly influence the rounding of the thousandths place in this scenario.
Question 5 of 5
What is the simplified form of the expression (x^2 + 2x)/(x)?
Correct Answer: A
Rationale: To simplify the expression (x^2 + 2x)/(x), we factor out x from the numerator to get x(x + 2) and then cancel the x in the denominator. This simplifies to x + 2, making choice A the correct answer. Choice B (x^2 + 2) is incorrect as it does not account for the division by x. Choice C (x(x + 2)) is also incorrect as it represents the factored form before cancellation. Choice D (1 + 2/x) is incorrect as it does not simplify the expression correctly.