ATI TEAS 7
TEAS Exam Math Practice Questions
Question 1 of 9
After taxes, a worker earned $15,036 in 7 months. What is the amount the worker earned in 2 months?
Correct Answer: B
Rationale: To find the amount earned in 2 months, set up a proportion using two ratios relating amount earned to months: (15,036/7) = (x /2). Cross-multiply and solve for x: 7x = 30,072, x = 4,296. Therefore, the worker earned $4,296 in 2 months. Choice A, $2,148, is incorrect as it is half of the correct answer. Choices C and D, $6,444 and $8,592, are incorrect as they do not correspond to the calculated proportion.
Question 2 of 9
Simplify the expression. Which of the following is correct? (3/2)(8/3) · (5/4)
Correct Answer: B
Rationale: Using PEMDAS (Parentheses, Exponents, Multiplication and Division, Addition and Subtraction): (3/2)(8/3) · (5/4) = (24/6) · (5/4) = (4/1) · (5/4). To divide fractions, the second fraction is flipped and then multiplied by the first fraction, resulting in (4/1)(4/5) = (16/5), which simplifies to 3(1/5) or 2.
Question 3 of 9
What is the result of the expression 102 - 7(3 - 4) - 25? Which of the following is correct?
Correct Answer: D
Rationale: To simplify the expression, we follow the order of operations (PEMDAS): Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right). First, solve inside the parentheses: 3 - 4 = -1. Then, multiply -1 by 7: -1 * 7 = -7. Now, substitute these values back into the expression: 102 - (-7) - 25 = 102 + 7 - 25 = 109 - 25 = 84. Therefore, the correct answer is 84. Choices A, B, and C are incorrect as they do not represent the correct simplification of the given expression.
Question 4 of 9
After taxes, a worker earned $15,036 in 7 months. What is the amount the worker earned in 2 months?
Correct Answer: B
Rationale: To find the amount earned in 2 months, set up a proportion using two ratios relating amount earned to months: (15,036/7) = (x /2). Cross-multiply and solve for x: 7x = 30,072, x = 4,296. Therefore, the worker earned $4,296 in 2 months. Choice A, $2,148, is incorrect as it is half of the correct answer. Choices C and D, $6,444 and $8,592, are incorrect as they do not correspond to the calculated proportion.
Question 5 of 9
Simplify the expression. Which of the following is correct? (52(3) + 3(-2)^2 / 4 + 3^2 - 2(5 - 8))
Correct Answer: B
Rationale: To simplify the expression, apply the order of operations (PEMDAS). Begin by squaring -2 to get 4. Then perform the multiplication and subtraction within parentheses: 52(3) + 3(4)/4 + 9 - 2(5 - 8) = 156 + 12/4 + 9 - 2(3) = 156 + 3 + 9 - 6 = 168 + 3 - 6 = 171 - 6 = 165. Therefore, the correct simplified expression is 165, which is equivalent to 87/19. Choices A, C, and D are incorrect because they do not represent the accurate simplification of the given expression.
Question 6 of 9
A sandwich shop earns $4 for every sandwich (s) it sells, $2 for every drink (d), and $1 for every cookie (c). If this is all the shop sells, which of the following equations represents what the shop's revenue (r) is over three days?
Correct Answer: A
Rationale: Let s be the number of sandwiches sold. Each sandwich earns $4, so selling s sandwiches at $4 each results in revenue of $4s. Similarly, d drinks at $2 each give $2d of income, and cookies bring in $1c. Summing these values gives total revenue = 4s + 2d + 1c. Therefore, option A, r = 4s + 2d + 1c, correctly represents the shop's revenue. Choices B, C, and D are incorrect because they incorrectly multiply the prices of each item by more than one day's sales, which would overstate the total revenue for a three-day period.
Question 7 of 9
Solve the equation 8x − 6 = 3x + 24. Which of the following is the correct solution?
Correct Answer: D
Rationale: To solve the equation 8x − 6 = 3x + 24, start by adding 6 to both sides: 8x − 6 + 6 = 3x + 24 + 6, which simplifies to 8x = 3x + 30. Next, subtract 3x from both sides to get 5x = 30. Finally, divide both sides by 5 to solve for x: x = 6. Therefore, the correct solution is x = 6. Choices A, B, and C are incorrect because they do not result from the correct algebraic manipulation of the equation.
Question 8 of 9
What is the perimeter of a rectangle with a length of 12 cm and a width of 5 cm?
Correct Answer: C
Rationale: The correct formula for the perimeter of a rectangle is P = 2(l + w), where l represents the length and w represents the width. Substituting the given values into the formula: P = 2(12 cm + 5 cm) = 2(17 cm) = 34 cm. Therefore, the perimeter of the rectangle is 34 cm. Choice A (17 cm) is incorrect as it seems to have added only the length and width without multiplying by 2. Choice B (24 cm) is incorrect as it does not consider the multiplication by 2. Choice D (40 cm) is incorrect as it seems to have added the length and width without multiplying by 2.
Question 9 of 9
Which of the following is equivalent to 8 pounds and 8 ounces? (Round to the nearest tenth of a kilogram.)
Correct Answer: B
Rationale: To convert 8 pounds and 8 ounces to kilograms, first convert 8 ounces to pounds by dividing by 16 (since 1 pound = 16 ounces): 8 ounces / 16 = 0.5 pounds. Then add this to the original 8 pounds: 8 pounds + 0.5 pounds = 8.5 pounds. To convert pounds to kilograms, use the conversion factor 1 pound = 0.453592 kilograms. Therefore, 8.5 pounds 0.453592 kg = 3.855 kilograms, which rounds to 3.9 kilograms. Choice A (3.6 kilograms), Choice C (17.6 kilograms), and Choice D (18.7 kilograms) are incorrect conversions or have errors in calculation compared to the correct conversion of 3.9 kilograms.