ATI TEAS 7
Practice Math TEAS TEST Questions
Question 1 of 5
A leather recliner is on sale for 30% less than its original price. A consumer has a coupon that saves an additional 25% off of the sale price. If the consumer pays $237 for the recliner, what is the original price of the recliner to the nearest dollar?
Correct Answer: D
Rationale: To find the original price of the recliner, you need to reverse calculate. Let x be the original price. The sale price is 70% of the original price, and after the additional 25% coupon discount, the consumer pays $237. Setting up the equation: x 0.70 0.75 = 237. Solving this equation, x ≈ $527. Therefore, the original price of the recliner was approximately $527. Choices A, B, and C are incorrect as they do not align with the correct calculation based on the given discounts.
Question 2 of 5
How many whole boxes measuring 2 ft * 2 ft * 2 ft can be stored in a room measuring 9 ft * 9 ft * 9 ft, without altering the box size?
Correct Answer: D
Rationale: The total volume of the room is 729 ft³ (9 ft * 9 ft * 9 ft). Each box has a volume of 8 ft³ (2 ft * 2 ft * 2 ft). Dividing the room's volume by the box volume, we get 729 ft³ / 8 ft³ ≈ 91.125. Since we can't have a fraction of a box, the maximum number of whole boxes that can fit is 92. Therefore, the correct answer is 92. Choice A (125) is incorrect as it does not result from the correct calculation. Choice B (64) and Choice C (18) are also incorrect and do not accurately represent the number of boxes that can fit in the room based on the given dimensions.
Question 3 of 5
A teacher asked all the students in the class which days of the week they get up after 8 a.m. Which of the following is the best way to display the frequency for each day of the week?
Correct Answer: A
Rationale: A histogram is the best way to display the frequency for each day of the week in this scenario. Histograms are ideal for showing the distribution of numerical data by dividing it into intervals and representing the frequency of each interval with bars. In this case, each day of the week can be represented as a category with the frequency of students getting up after 8 a.m. displayed on the vertical axis. Choice B, a pie chart, would not be suitable for this scenario as it is more appropriate for showing parts of a whole, not frequency distributions. Choice C, a bar graph, could potentially work but is more commonly used to compare different categories rather than displaying frequency distribution data. Choice D, a scatter plot, is used to show the relationship between two variables and is not the best choice for displaying frequency for each day of the week.
Question 4 of 5
Which of the following best describes the data set below? 1, 1, 2, 2, 2, 2, 3, 3, 7, 7, 8, 8, 8, 8, 9, 9
Correct Answer: C
Rationale: The correct answer is C: Bimodal. A bimodal distribution has two distinct peaks or modes. In this data set, the numbers 2 and 8 appear more frequently than other numbers, creating two modes (2 and 8). Choices A, B, and D are incorrect. Option A, 'Uniform,' describes a distribution where all values have equal frequency, which is not the case in this data set. Options B and D, 'Right-skewed' and 'Left-skewed,' refer to distributions where the data is skewed towards one side, which is not observed in this dataset. Therefore, the data set is best described as bimodal.
Question 5 of 5
What is the best estimate in meters for the average width of a doorway?
Correct Answer: B
Rationale: The correct answer is B: 1. The average width of a doorway typically ranges from 0.8 to 1.2 meters, making 1 meter a reasonable estimate. Choice A (0.5) is too narrow for a standard doorway. Choice C (10) is too wide for a typical doorway. Choice D (3) is also wider than the standard width of a doorway.